Stability Region of Singularly Perturbed Systems

نویسندگان

  • LUÍS F. C. ALBERTO
  • HSIAO-DONG CHIANG
چکیده

 This paper studies the characterization of the stability boundary (the topological boundary of stability region) of nonlinear autonomous singularly perturbed dynamical systems. In particular, a relationship between the stability boundary of the singularly perturbed system and the stability boundary and stability region of the slow and fast systems is investigated. Conditions, in terms of location and stability properties of equilibriums of the slow and fast system, for ensuring that a type-one equilibrium point lies on the stability boundary of the singularly perturbed system are derived. It is also shown how approximations of compact subsets of the stability boundary of the singularly perturbed system can be obtained in terms of the stability boundary and stability regions of the fast and slow systems. Resumo – Este artigo estuda a caracterização da fronteira da região de estabilidade de sistemas dinâmicos autonomos não lineares singularmente perturbados. Em particular, uma relação entre a fronteira da região de estabilidade do sistema singularmente perturbado e a região de estabilidade e fronteira da região de estabilidade dos subsistemas lento e rápido é investigada. Condições, em termos da localização e propriedades dos equilíbrios dos sistemas rápido e lento, para garantir que um ponto de equilíbrio hiperbólico do tipo-1 pertença à fronteira da região de estabilidade do sistema singularmente perturbado são exibidas. Mostra-se também como aproximações de subconjuntos compactos da fronteira da região de estabilidade do sistema singularmente perturbado podem ser obtidas a partir da fronteira e região de estabilidade dos sistemas rápido e lento. Keywords Stability Region, Stability, Attraction Basin, Singularly perturbed systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type

In this paper, we have proposed a numerical method for singularly perturbed  fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and  finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided  in...

متن کامل

An efficient numerical method for singularly perturbed second order ordinary differential equation

In this paper an exponentially fitted finite difference method is presented for solving singularly perturbed two-point boundary value problems with the boundary layer. A fitting factor is introduced and the model equation is discretized by a finite difference scheme on an uniform mesh. Thomas algorithm is used to solve the tri-diagonal system. The stability of the algorithm is investigated. It ...

متن کامل

Input-to-State Stability of Singularly Perturbed Control Systems with Delays

We study the input-to-state stability of singularly perturbed control systems with delays. By using the generalized Halanay inequality and Lyapunov functions, we derive the input-to-state stability of some classes of linear and nonlinear singularly perturbed control systems with delays.

متن کامل

A hybrid method for singularly perturbed delay boundary value problems exhibiting a right boundary layer

The aim of this paper is to present a numerical method for singularly perturbed convection-diffusion problems with a delay. The method is a combination of the asymptotic expansion technique and the reproducing kernel method (RKM). First an asymptotic expansion for the solution of the given singularly perturbed delayed boundary value problem is constructed. Then the reduced regular delayed diffe...

متن کامل

Passivity-Based Stability Analysis and Robust Practical Stabilization of Nonlinear Affine Systems with Non-vanishing Perturbations

This paper presents some analyses about the robust practical stability of a class of nonlinear affine systems in the presence of non-vanishing perturbations based on the passivity concept. The given analyses confirm the robust passivity property of the perturbed nonlinear systems in a certain region. Moreover, robust control laws are designed to guarantee the practical stability of the perturbe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010